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The problem of existence of periodic solutions of equations of natural mechani- 
cal system motions is considered in the case when region D of all possible mo- 
tions is bounded. Periodic libration solutions are derived for systems with many 

degrees of freedom. The trajectory of such solution is diffeomorphic to segment 

[0, 11, its ends lie at the boundary of D, and the representative point oscillates 
along that curve. Existence of libration solutions is proved in the case when the 
region of possible motions is diffeomorphic to the direct product N X 10, 11, 
where IV is a smooth compact manifold. Obtained results are applied in the prob- 
lem of motion of a solid body with a fixed point in a Newtonian force field. 

1. Statement of the problem, Let M be a smooth compact n-dimensional 
manifold representing the configuration space of a natural mechanical system with R de- 

grees of freedom. We denote the kinetic energy by T (a smooth function in the tangen- 

tial stratification of the configuration space and quadratic with respect to velocities) and 

the potential by V (a smooth function in M). The first integral of motion of the sys- 
tem is that of energy T - V = h. For a fixed h we determine from this integral the 

region D = {h $ V > 0) c M. By the principle of least action in region D the 
problem of derivation of solutions of equations of motion reduces to that of determina- 
tion of geodetic lines of the following metric: 

dp2 = (h + v)d.s2 

where ds2 is the Biemannian metric in M that specifies the kinetic energy (i.e. T = 
‘/a (czshq~). 

Two cases must be considered viz: (1) h > maxhr (-V), and (2) h< maxM(-V). 
In the first case D coincides with the whole configuration space and the problem of 

existence of periodic solutions of equations of motion reduces to finding closed geodetic 
lines of the smooth Riemannian manifold (M, dp). To each closed geodetic line cor- 

respond two different periodic solutions of the input problem (of motion along such curves 
in opposite directions). By analogy with systems with a single degree of freedom we call 
these solutions gyrations. Existing estimates of the number of closed geodetic lines partly 
depend on the topological structure of M and partly on the Biemannian metric dp [l]. 

So far the best universal lower estimate is 2 [2]. Thus at least four different periodic 

volitions exist at (2n - 1) -dimensional levels of the energy integral at constant h > 
max f--V) 
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In the second case region 1) is bounded and the metric dp has the singularity that 
the closer one comes to the boundary of 11, the shorter becomes the length. The length 
of any curve lying on the boundary itself (b’ ~~- -1~) is zero. 

We denote the boundary of manifold iii C .V by 3N. Henceforth only such con- 
stant energies h are considered for which there are no critical points of potential Ii 

along dD . Any other values of ?l, and in particular h -= mar; (-- V) are critical. 

The metric of the manifold critical values is zero [3]. Equilibrium states of the consi- 

dered system exist along dD for critical h , and singular points of equations of motion 

are present on the corresponding levels of the energy integral. For noncritical IL the 

boundary iiD is a smooth compact (n - 1) -dimensional manifold. 
Let us consider the problem of existence of periodic solutions at the related energy 

levels. The problem of existence of closed geodetic lines in a boundedtiemannian 

manifold, which does not have common points with the boundary ofthat manifold, was 

considered by Whittaker [4] and by Birkhoff [5]. Since in these investigations the non- 

degeneracy of the metric at the boundary and the convexity of the boundary itself were 
specifically stipulated, their results are evidently inapplicable in the problem stated here. 

2, Libtrtion in ry8tsmc with many degree, of freedom. We denote 
the position of the system in the configuration space M by m (m E M). Let q ~~ 
{Qi} (i == 1 . . . a> be some local coordinates in M . 

Lemma 1. If 41 (t) and q2 (t) are two solutions of the equation of motion with 
initial data ql (0) = q2 (0) =- q,, and ql’ (0) = ---Q~’ (0) == u”, then q1 (+t) z 

42 Gft). 

Corollary. If q (t) is the solution of equations of motion with initial conditions 
q (0) == q. and qscoj = 0. then y (tj I=- q (-t). 

Proof of Lemma 1. If 4 (t) is the solution of Lagrange equations with the La- 
grangian L = T _I- V and initial conditions (for t = 0) q(O) = qO and Q’(U)‘- o”, then 

q (- t) is the solution of the same equations with initial conditions q(Oi = q. and q’(O)== 
- 110. To complete the proof it is necessary to use the theorem of uniqueness of solutions 

of Lagrange equations with positive definite quadratic form of 1’. 

Lemma 2. Solution of the equations of motion whose trajectory intersects the boun- 
dary 8D at more than two different points does not exist. 

Corollary. If for 2 = 0 point m E c;D, then there exists F > 0 such that for 

t Fr,‘g; “,‘fp;;tm;F p. 
. Let us assume that there exists a trajectory that successively 

intersects BD at three points a, b and c. Point m moving from point a reaches after 

some time point b. Then,in accordance with the corollary to Lemma 1, point m moves 
along the same trajectory in the opposite direction, and after some time returns to point 
a , after which point m will move again from point a to point b , and so on. Hence 

point m can never reach point c. This proves Lemma 2. 
Theorem 1. If the trajectory of a certain solution of the equations of motion has 

two common points with dD , there are no other common points and the solution is peri- 
odic. 

Proof. Let y be the trajectory of such solution. According to Lemma 2 curve y has 
only two common points with dD , and point m (by the corollary of Lemma 1) periodic- 

ally oscillates between the ends of y . 
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By analogy with systems with one degree of freedom we call the solutions described 

in Theorem 1 libration solutions. 

3. Conrtruction of the requenca of geodetic line rrgmrnta. 
We shall prove the existence of librations in the case when region D of possible motions 

is diffeomorphic to the direct product N X [0, 11, where N is a smooth (n - I)- 

dimensional manifold. The boundary cYD consists of two manifolds 80’ and 69” diffe- 

omorphic to N. Without loss of generality .N can be considered as a connected mani- 
fold. 

The following method is proposed for the derivation of libration periodic solutions. 

We consider in a fixed region D = N X 10, 11 the sequence of mutually imbedded 

sub=giom Dk = N X [l / (k + 2), 1 - ‘i / (k + 2)1 (k = 1, 2...) 

whose boundaries (80,’ and a&“) for k --f oo tend uniformly to dD. For each re- 
gion DI, segments of geodetic lines in metric dp with their ends on 8Dk are constmc- 
ted. It is then shown that it is possible to choose from the sequence of constructed seg- 
ments a subsequence which in region D is convergent in metric dS to the geodetic 

line whose ends lie in aD, and the motion on that geodetic line is periodic. 

Theorem 2. A segment of the geodetic line vk in metric dp whose ends lie on 

8Ds and a&” exists in region DI, (k = 1, 2 . . .) , and the lengths of ‘y& are uniformly 
upper bound with respect to k . 

Pro of. Let us consider the smooth manifold M’ = N X R. We identify the sub- 

manifold jV X [0, 11 c M’ with region D , fix the number k , and denote Dk by 

E. The metric dp is determined in E and in some neighborhood of manifold E in 
M’. Let dp’ be a smooth metric in M’, such that the Riemannian space (M’, dp’) 

is complete and dp’ coincides in E with dp. Such metric exists according to the sta- 

tement on smooth continuation of tensor fields (see, e. g. , [3]). It is evident that the geo- 

detic lines in the new metric dp’ coincide in E with the geodetic lines in metric dp. 
Let m, E a,!?’ and na2 E 8E”. The exact lower bound of the length of piecewise 

smooth curves beginning at ml and ending at m2 is taken as the length p (m,, m,) bet- 
ween points m, and m2 The lower bound of distances between any points on aE’ and 

dE” is taken as the distance oE between i?E’ and LIE”. Since p (m,, m,,) is continu- 
ous in dE’ x aE” , and 8E’ and BE n are compact, hence there exist on aE’ and aE” 
points al and as the distance between which is &. Because the Riemannian space (M’, 

dp’) is complete, points a, and a2 can be connected by the geodetic line ( y = yk) of 
length PE [3]. Let us show that y lies entirely in E. If we assume the opposite, then 
there must exist a part of Y which connects certain points on aE’ and 6’E” whoselength 

is shorter than pg. Since the length y = Yk does not exceed that of any piecewise- 
smooth curve in region D whose ends lie on do’ and aD”, the lengths Yk are uniformly 
upper bound with respect to Fc . Theorem 2 is proved. 

4. Proof of exfrtance of periodic librrtion rolutfona, 
Theorem 3. A periodic libration solution exists in region D = N X [0, II , 

whose trajectory has no self-intersections and whose ends lie on 80’ and do”. 

Proof. Let I,, . . ., lk, . - . be the length of geodetic line segments Vi, - - - 9 
Yk, . - . Evidently 0 < I, < . . . < lk < , . . . Let 1 = au& lk. The length of 
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P hn V), r(t)) -c E for t, \< t < t2. Instead of yn let us consider the piecewise- 

smooth curve yTI’ that for t E [I / n, t,l U its, 1 - 1 / n] coincides with yn, and 
for t E (tl, ts) with the shortest geodetic which connects points 7n (t,) and Yn (ts). 
We denote by L and L’ the lengths of parts Y,, and Yn’when t, < t < t,. It is obvl- 

ous that L>, 1, 1 t, - t, 1 and L’ ( 213. For small E the piecewise-smooth curve 
Yn‘ that lies in D, and connects dD,’ and dD,” is shorter than vn. But this contra- 

dicts the assumption that Y,, is the shortest of all piecewise-smooth curves connecting 

the boundaries of D,. 
It remains to show that the closure r (@‘) is a geodetic with ends on aD, and thatthe 

motion of point pn on 1‘ is periodic. Let us consider the solution of equations of motion 

for the following initial conditions: at the instant of time t = 8 point m lies on I‘ 

inside D , that the velocity is directed along I?, and that the magnitude of the latter 

is determined by the value of total energy h specified above. We assume for definite- 

ness that for t > 0 point m moves toward the boundary 80’ (i.e. passes through points 

M k’ that are close to 8D’). The following may occur : either within a finite time point 
m reaches aD’ or for all t > 0 point m e au’. In the first case point m, according 

to the corollary of Lemma 2 after reaching dD’ moves along the same trajectory in the 
opposite direction toward i?D”. The same alternative occurs here: either at a certain 
instant of time m E dD” , or point m never reaches the boundary. In the first case 
by Theorem 1 point m oscillates periodically along T, which proves the above assertion. 
There remains,therefore, to consider the case when m in its motion along I? never 
reaches aD. Let us show that in that case point m asymptotically approaches dD (here 

and in what follows we consider convergence with respect to metric ds). We denote by 

U, the a-neighborhood of manifold dD in metric do * If m does not tend to dD, then 
there exists an a,, > 0 such that for an arbitrarily great t point m lies outside u,,. 

On the other hand, point m passes through points mk’ and mk’ which can be as close 

to dD as desired. Beginning at some number k these points lie in UEn,s. In metric dp 
the distances between the points of manifolds D \ U,, and D n UEo12 are bounded 

below by some positive number. Hence the length of r is infinite. This is, however, 

not so. 
We shall prove now that for some t‘ > 0 point m cannot remain for an infinitely 

long time in region V, = {h + V < a}. We select a1 sufficiently small for the po- 
tential V to be free of critical points in V,, . Since V,, is compact, there exists a finite 

cover of manifold V,, consisting of small regions W, c M (s = 1, . . . , N), which 
can be entirely represented in Cartesian coordinates. First, let us estimate V’ in Vcl. 
We assume s to be fixed and denote the local coordinates in W, by qr, . . ., Qn . By 
the Cauchy-Buniakowski inequality 

where u is the velocity of point m. Since i” is a positive definite quadratic form, the 
inequalities c~,~u~ < ’ r < cs,sn2 (cr,s, czls > 0) are valid in region IV, . It follows 
from the energy integral T = h + V that in V,, the kinetic energy T < Q. Hence 

the inequality ) V’ ) < c~,~ is satisfied in region V,, n W, . 
Let us set CS = max, c3,$. Then throughout the manifold V,, the inequality 

1 V 1 < C, is valid. Let for some E > 0 and E < &r the intersection V, n W, be 
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nonempty. We estimate in that region 

Using the Legendre transformation and the canonical equations 

87’ . ifT 

we obtain 

i &&&-~+@2 . 
l,i=l 1 3 3 

where 0, is a quadratic form with respect to Qi’ with restricted coefficients in V,, n 

IV,. Hence the inequality 1 Q 1 < C&E (~4,~ > 0) holds in region V, n w, , The 

expression 

+,,;r&$$L 
(4.2) 

i 3 I 

is the scalar square of vector grad V in metric T. 
Since T is a positive definite form and function T/ has no critical points in region 

Ve,, there exists a cbrs > 0 such that in V,, fl w, the sum (4.2) is not less than 

cbrs / 2. Hence the inequality V” > csts - c,,, E is valid in region V, f-J w, . 
Setting C, =rna~~c~,~,, C5 = minscs,s (C,, C, > 0) we find that the estimate 

V” > Cs - CIe holds throughout region V,. Since C,, C, and CS are independent 
of E, there exists eO > 0 and a0 < er such that in V,, we have simultaneously 

If at t = 0 point m is in region VCtl , then h+ V > C,t2/2-C&,and,con- 
sequently, the time during which m remains in the manifold {h + V < q,} does not 

exceed the positive root of the following equation: 

&x2 I 2 - c,x z E0 

The assertion stated above is thus proved. As a corollary we obtain that m cannot 

asymptotically tend to aD when t +- 00. This shows that the second alternative is not 

possible. Theorem 3 is proved. 

6. Application to the problem of rotation of a Dolid body with 
a ftxed point in a Newtonian force field, This natural mechanical sys- 
tem has three degrees of freedom. Its configuration space is represented by the group 
SO (3). The problem is invariant under the action of the group of gyrations g”(s E [O, 
27~)) about the vertical axis. A cyclic integral - area integral - corresponds to group 

g” , its constant is denoted by j . 
Let us, first, consider the question of existence of periodic motion of a body in a three- 

dimensional space, Let h = o be the maximum critical value of the energy Integral. 
For h > o the region of possible motions coincides with the whole SO (3). At least 
three different closed geodetic lines exist in any Riemannian SO (3) [l]. Six different 
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periodic motions of the solid body correspond to these. For remaining noncritical h. each 
connected component of the region of possible motions is, according to [‘I, 81, differo- 
morphic to T2 X LO, 11 (T2 is a two-dimensional torus) or to S1 X D2 (,t$r is a circle 

and D2 a two-dimensional disk), In the first case, by Theorem 3, there exists at least 
one periodic libration motion of the body, This periodic solution of equations of motion 
belongs to the area integral zero level, since for j # 0 the velocity of the body isnever 

zero. If y (t) is a libration solution, then g” (y) (s E [O, 27~)) is also a periodic lib- 
ration solution. Since y is not a permanent gyration, hence for s E (0, f&c) we have 

g” (4 # Y l 
Consequently, a single-parameter set of libration motions exists in region 

T2 X 10, 11 . 
Let us consider in detail the case of 1 = 0. The presence of the symmetry group 

makes it possible to reduce the problem to that of a system with two degrees of freedom 

by factorization with respect to g”. It is obvious that SO (3) / g” = S2 (Poisson’s 

sphere). Reducing by kouth’s method the order of the system in local generalized coor- 
dinates 6, cp and $ (Euler’s angles), we obtain a natural system with two degrees of free- 
dom in which 

T_+ + ZrlQ’ -j- $ 

where 

Ku = AB sin2 6 + C cos2 13 (A cos2 cp i- B sin2 cp) 

Kb = (B - A) C sin 6 cos 6 sin cp cos cp 

Kc = C sin2 6 (A sin2 cp + B cos2 'p) 
K = A sin2 6 sin2 ‘p + B sin2 zf cos2 cp + C COS2 6 

and V is the NewtoAan force field potential. 

It can be readily shown that T is a positive definite quadratic form. We shall show 
that T and I’, which are definite for 6 # 0, n, are analytically continued over the 

whole Poisson’s sphere. This is obvious for the potential V. Let us consider form T in 

local coordinates x = sin 6 sin cp and y = sin +3 cos cy on S2, which do not have 

singularities at the poles 

K = Ax2 + By2 + C (1 - x2 - y”) 

Since form T analytically depends on x and y when their values are small, the sta- 

ted assertion is proved. 
The derived here results can be applied to the obtained natural system. For h > 0 

the region of possible motions coincides with the complete Poisson’s sphere. Since on a 

two-dimensional Riemannian sphere there are at least three different closed non-self- 
intersecting geodetic lines, the equations of the reduced system have six different perio- 
dic solutions [9]. For the remaining noncritical values of h every connected component 
of the region of possible motions is either a ring ,S X [0, 11 or a disk ,@ [7, 81. In 
the first case Theorem 3 shows that them exists at least one libration solution with anon- 
self-intersecting trajectory. The question of existence of periodic solutions in the second 

case remains open. 
Note. The existence of libration solution in the ring region of the reduced system 
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is obviously the result of libration motions of the body in region 3’s X ir!, i f C SO (3). 
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The permanent rotation of a heavy solid body about its principal axis of inertia 

with a fixed point is considered. Stability is investigated with the use of the the- 

orem on the stability of Hamiltoni~ systems with two degrees of freedom in the 
general elliptic case. It is shown that in the absence of certain resonance rela- 

tionship in the region of necessary stability conditions, which does not coincide 

with the region of known sufficient conditions, the first approximation indicates 
the existence of stability, except possibly, in the case when the parameters ofthe 
problem lie on some specific manifolds of the parameter space. Subregions that 
are free of such exceptional manifolds are indicated in each region of necessary 
stability conditions. 

Necessary stability conditions for permanent rotation about principal axes of 
inertia of a solid body were investigated by Grammel [3]. Sufficient conditions 
that matched necessary conditions were obtained by Chetaev in the case of La- 
grange integrab~ity [4]. and by Rumiantsev in that of Kowalewska integrability 
[S]. Permanent rotation of a body with arbitrary mass d~ribution about its prin- 
cipal axis of inertia was considered in [6 - 81, where sufficient stability condi- 


